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ABSTRACT

In his report we showSthat a twist map of an annulus with a periodic

point of rotation number p/q must have a Birkhoff periodic point of rotation

number p/q. We usefopological techniquesA so no assumption of area-

preservation or circle intersection property is needed. If the map is area

preserving then this theorem and the fixed point theorem of Birkhoff imply a

recent theorem of Mather. -We also showathat periodic orbits of

(significantly) smallest period for a twist map must be Birkhoff.
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SIGNIFICANCE AND EXPLANATION

It was noticed first by Poincar6 that some questions concerning stability

and existence of periodic and quasi-periodic orbits in the three body problem

of Celestial Mechanics could be reduced to the study of maps of the annulus

satisfying a twist condition. The twist condition states that the angular

difference between a point and its image is proportional to the radial

distance from the inner boundary of the annulus. In the context of Celestial

Mechanics there is a natural invariant measure for the maps, however, twist

maps appear in other contexts (e.g. maps of the plane after Ropf bifurcation)

where there is no invariant measure available.

The existence of periodic orbits for area-preserving maps has been shown

by Poincare and Sirkhoff. Recent theorems of Mather and others show the

existence of special 'Birkhoff' periodic orbits and of associated quasi-

periodic orbits for area-preserving twist maps. In this report we show that

there is a version of Mather's theorem which does not require the area-

preserving condition. This theorem then applies to dissipative twist maps.

We also show that the periodic orbits of a twist map which have smallest

period must be the simple 'Birkhoff' orbits. Accession For
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A TOPOLOGICAL VERSION OF A THEOREM OF MATHER ON TWIST MAPS

Glen Richard Hall

1) Introduction% We say a diffeomorphism f of an annulus onto itself satisfies a twist

condition if the angular component of the image of a point under f increases as the

radial component of the point increases (see Section (2) for precise definitions). Such

maps were first studied in connection with the three-body problem by PoincarG, and in this

context the map has a natural invariant measure. Birkhoff [B1,B2] showed that such area-

preserving twist maps have many periodic orbits, however his theorem gave no insight into

the nature of these orbits. Recently, Mather (Nl] (see also Katok I) has shown that

area-preserving twist maps possess periodic orbits such that f preserves the angular

ordering of points on the orbit, such orbits are called Birkhoff periodic orbits (see

Katok [K] and Section (2)). Moreover, Mather also shoved the existence of 'quasi-

periodic' orbits for area-preserving twist maps. The variational techniques used by

Mather have proven useful in the study of other aspects of area-preserving twist maps

(see, for example |X23).

Twist maps also occur frequently as nonaroa-preserving maps. For example, near the

rest point of a map of the plane which has undergone Hopf bifurcation a twist condition

will be satisfied. For such dissipative maps there will be no invariant measure.

In this report we show that a twist map of the annulus having a periodic orbit of

some rotation number will have a Birkhoff periodic orbit of the same rotation number. One

can think of this as replacing the area-preserving hypothesis with the assumption on the

existence of periodic orbits, so this theorem can be applied to dissipative maps (see

Chanciner (5]). Given an area-preserving twist map, Birkhoff's theorem mentioned above

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and a National
Science Foundation Postdoctoral Fellowship.
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gives the existence of many periodic orbits, and hence ather's theorem my be derived as

a corollary.

The idea of the proof is to make use of the twist condition to show that periodic

orbits which are not Birkhoff periodic orbits are topologically complicated. For example,

if we suspend the twist map and look at the orbit of a non-Birkhoff periodic orbit it

forms a non-trivial braid. The way in which these orbits link, given by the twist

condition, can be used to imply the existence of new periodic points either by a geometric

argument or a theorem on braids and periodic orbits of Matsuoka ([at]. In particular, if

a twist map has Birkhoff and non-Ptrkhoff periodic orbits of some given rotation number

then it must infact have two distinct Birkhoff periodic orbits with that rotation number.

In Section (2) we give the notation used throughout. In Section (3) we state the

main result, proved in Section (5) using lemmas of Section (4). Section (6) is used to

give some related theorems for twist maps which say basically that a periodic orbit with

period (much) smaller than the period of every other periodic orbit of a given twist map

must be a Birkhoff periodic orbit.

Acknowledgements. The author would like to thank all of those who listened patiently and

offered suggestions and encouragement during this work. Particular thanks to C. Conley,

Z. Mansfield and D. Terman. A special thanks to N. Handel for suggestions simplifying and

extending Lemma (4) which removed many technical difficulties and for suggesting the

possibility of theorems of Section (6).
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2) Definitions and Notations: we let

A - ((xy) e R2 - o y 4 1)

- I  (respectively W2 ): A + R a (xy) + x (respectively y)

be the usual projections and for each a e R

le = ((a,y) e A a 0 4 y 4 1)

Definition: A map f : A + A in called a twist map if

1) f is a C2 diffeomorphism, preserving boundary components and orientation,

2) V(x,y) e A, f((x,y)) + (1,0) - f((x + Iy))

(WlOf)

3) 25 > 0, Vz e A, 3y (z) >

Remarks: Condition (2) states that f is the lift of a map on the annulus of which A

is the universal cover. Condition (3) is the 'twist condition', it implies that for any

aQ, e R, f(La) A 1 t is at most one point (see Figure 1). This is sometimes called a

4monotone' twist condition.

10,/
a B /

//

/

Figure 1

Definition: The orbit of a point Z e A under a twist map f : A + A is defined to be

the set 0(fz) {kW(z) + (1,0) a kJL e z).

Definition: A point z e A is called a p/q-periodic point for a twist map f : A + A if

fq(z)- (p,O) = z

-3-



liilarly, a point x e A is called a p/q-Dirkhoff periodic point for f if z is a

p/q-periodic point and for any zlz2 e OClz)

w(Z 1 ) < V Ox2) -> W(f(z)) < Il(f(z2 ))

Remarksi Recall that f is the lift of an annulus map and hence the 'orbit' defined

above and the definition of p/q-periodic point correspond to the lifts from the annulus of

the usual orbit and periodic points. The p/q-Birkhoff periodic points are those p/q-

periodic points x for which f restricted to O(f,z) is 'order preserving' in the x-

coordinate.

Definition: If f : A + A is a twist map and z e A then the rotation number of f

at a is

P(f,z) = linm I T (l f nl(2 )
n4-

if it exists.

Notation, The mps f{(x,i),,W} i 0,1 are lifts of circle diffeomorphism, hence we

let

PO(f) - p(f,(xO)) and p,(f) - p(f,(x,1))

where these definitions are independent of x e R and the limits exist (see Herman [HI]).

-4-
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3) Statement of the Main Theorem: In this report we prove the following theorem:

Theorem 1: If f : A + A is a twist map and f has a p/q-periodic point then f has a

p/q-Birkhoff periodic point.

This theorem applies, whether or not f is area-preserving. If f is area

preserving then we can combine it with the following two results to obtain a theorem of

Mather.

Theorem 2 (Birkhoff [B1,32], see also Chanciner [C]): If f : A + A is an area-

preserving twist map and p/q e [p0 (f),pl(f)] then f has a p/q-periodic point.

Rmark: Dirkhoffs theorem (known as 'Poincar6's Last Geometric Theorem') is actually true

under a much weaker twist condition.

Lemma 0 (Katok [K): If f : A + A is a twist map, {n0} is a sequence of rationals

Pn0
with "° + a Q as n and for each n, f has a -- - Birkhoff periodic point zn

then any limit point z of (zn)r 0  satisfies p(f,z) - a.

Remark: In fact, mach more is true of the orbit of such limit point z of {Zn}n)0* The

map f restricted to it is order preserving in the x-coordinate and the orbit lies on the

graph of a periodic Lipschitz function (see Mather 1M1, Katok [K], Herman [32] ). These

additional facts follow merely from the geometry of twist maps.

Theorem 3 (Mather [M1]): If f : A + A is an area-preserving twist map and

a e (p0 (f),pl(f)] then there exists % e A with p(f,z.) " a.

Proof of Theorem 3: By Dirkhoff's theorem (Theorem (2)), for each rational

p/q e [p 0 (f),pl(f)] there is a zp/q e A which is a p/q-periodic point of f. By

Theorem (1) we see that there mist then exist a p/q-Birkhoff periodic point. Applying

Lema (0) to sequences of Birkhoff periodic points we can obtain points with irrational

rotation number for any irrational in [p 0 (f),p 1 (f)], which completes the proof of the

theorem. //. (See the remark above and the papers of Mather (Ml], Katok [K], and Herman

CR21 for the other properties of the orbits of these 'Birkhoff points'.)

*-5-
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The proof of Theorem (1) proceeds as follows: Assume we have a twist map f : A + A

with a p/q-periodic point. Then we show that f can be homotoped to a twist map

q : A + A which has a p/q-Birkhoff periodic point such that each map in the homotopy has

p/q-periodic points. The set of maps which have p/q-Birkhoff periodic points will then be

seen to comprise an open-closed set in the parameter of this homotopy. Closure follows

easily from the definition of Birkhoff periodic point (see Lemma (1) below) while openness

follows from the fixed point lemma of the next section, Lemma 4. Basically this lemma

says that a map with a p/q-Birkhoff periodic orbit and another p/q-periodic orbit must

infact have two p/q-Birkhoff periodic orbits, moreover this second orbit must persist

under small perturbations.

The next section contains some lemmas needed for the proof of Theorem (1) which is in

Section (5). In Section (6) we show, using similar, but technically easier techniques

that if f : A + A is a twist map and for some relatively prime integers p,q the map

f satisfies the following condition:

(0) Every r/s-periodic point of f has s = q or s > (3/2)q

then every p/q-periodic point of f is a p/q-Birkhoff periodic point. Conditions on

p/q, p0 (f) and p,(f) can be given which imply the condition () above saying

essentially that the map isn't twisting very much. For area preserving twist maps we can

improve this theorem, replacing (*) with the following:

Every r/s-periodic point of f has s ) q

obtaining the same conclusion, that every p/q periodic orbit is a p/q-Birkhoff periodic

orbit.

-6-
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4) Some Lemmas: In this section we prove lemmas useful in the proof of Theorem (1).

Lemma 1: Suppose fn : A + A is a sequence of twist maps, n - 1,2,... and for some

fixed p,q relatively prime integers, each fn has a p/q-Birkhoff periodic point

z n e A. If fn converges, in the sup norm topology, to a twist map f0 : A + A (i.e.

sup IfnW - f0(z + 0 as n + - where I*1 is the usual R2 norm) and zn converges
z6MA n 0 A

to z 0 e A as n tends to infinity then z0 is a p/q-Birkhoff periodic point of f0 .

Proof of Lemma I- Since fq(zn) - (p,0) z zn for all n = 1,2,... it follows that

fg(z0 ) - (p,O) = z0. (Moreover, fg(z0 ) - (r,0) 0 z0  for any r,s with s < q since

p and q are relatively prime.) Hence, z0 is a p/q-periodLc point of f0 .

To show that z 0  is a p/q-Birkhoff periodic point of f0  we fix kl,k 2 , 1 1l 2 e Z.

Then for n = 1,2,...

k 2 k1+1 k2+1

(f (z)) + 1 
< 
w(fn (z)) + t > (fn (z1)) + I < Xl(fn (z )) + 2I n n 1 I n n 2 1l n n I In n 2

But then the same statement holds by continuity when we replace fn and zn by f0

and z0 respectively and put '(' into the second inequality. But suppose

V(f0 k(I )) + it < W (fk (2 )) + it M
1(f0  0 1 1 0 0 2'

and
k 1 +1 k2 +1

W (f 0  (z)) + t (f0 (z)) + t
10 0 1 10 0 2

k +1 k2+1

Then, by the twist condition we have w2 (f 0  (z0)) > T2 (f 0  (z0 )) (see Figure 2). So,

*k 1+2 k2+2

again by the twist condition W (f0  (z )) + it > 1 (f0 (0)) + it But this implies

k1+2 
k2+2

I (fn (Zn)) + I > W (fn (z )) + t2 for n sufficiently large while () above

implies N (f (z )) + I < Il(f 2 )) + I for n sufficiently large and this
In n 1 1 0 n 2

contradicts the fact that z n  is a p/q-Birkhoff periodic point of fn. So zo must be a

p/q-Birkhoff periodic point of f0  and the proof is complete. //.

The next lemma says we can suspend a given twist map so that the intervening maps are

also twist maps.

-7-
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kc 1 +1C M O
f (z 0)+(11 O) ~ z)C~0

kc k 2k+2/
f2 ~ (z )+(tL) I z0+U20

0 L 2 -L,.I

k 2 k+1 k 1k+2

(z 0 )+(1 2#7 1 (z 0)+(1 .0)

Figure 2

Loma 2: Given a twist map f A + A there exists a C1  map * A x R + A sauLsfying

1) #(-,0) - identity on A, 4(0,1) = VC-),

2) vt e [0,1], vn e z,. #(-,t + n) - *CfnC. ),t)

3) vt 6 (0,1], #(-,t) is a twist map,

4) Vz e A, vt e R, #CZ + C1,0),t) - 4C2,t) + (1,0).

Proof of Lemsa 2: it suffices to define # on A x (0,1] so that (1, 3 an~d 4) are

satisfied since (2) can then be used to extend the definitionx to all of R.

Let fo : R * R be given by foCx) - x11f(,,)) and G : R2 + R be given by

Yz e A, GWz - DICfI CW))0,1)

where Df(w) is the derivative (matrix) of f at w e A. Then I is determined by the

ma fo and the vector field G as follows: Let *' be the local flow with domain in

A x Rt determined by the initial value problem{ dt Cz,t) - GC4'(z,t))

#Cz,o) - z, vz 6 A

Then f is given by

vz e A, f(z) - *C(fo (I (z)),0),I 2Cz)) )

The required homotopy of f can then be easily constructed by

a) deforming fo to the identity on R through diffeomorphisms which are lifts

of circle diffeoforphisms;

-8-
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b) forming a smooth, one-parameter family G: A + R
2  

of vector-fields with

parameter s e [0,1] so that Go  is the constant (0,1) and G, is equal

to G. To assure condition (3) we construct G. so that the angle between

Gs(z) and the x axis is always between -w/2 and w/2 and increasing with

s. For condition (4) we require Gs(z + (1,0)) - Ga(z) for all z e A,

a e [0,1].

The maps *(*,s) are now given by using the solution of the vector field G. and the

initial conditions specified by the diffeomorphism in (a) above in an equation of the form

(**). Of course, to extend f to a globally smooth map on A x R we must *match up" the

families of circle maps and vector fields given in (a) and (b) near s = 0 and s - 1.

These details are left to the reader. //.

It is the topological nature of the orbits of p/q-Birkhoff periodic points under

these flows which is the key to the proof of Theorem (1), i.e., the fact that they are not

'linked' as is made precise in the next lemma.

Suppose f : A + A is a twist map and p,q are relatively prime integers. Let

g : A + A be defined by

Vz e A, g(z) - fq(z) - (p,O)

Then the fixed points of g correspond precisely with the p/q-periodic points of f.
I'

'I Suppose f has a p/q-Birkhoff periodic point z0 e A, then we have

Lesmma 3: There exists a C1 map f : A x R + A satisfying

i) Vz e A, Vte R, *(z + (1,0),t) = *(z,t) + (1,0)

ii) #(-,0) = identity, *(.,I) - g(*)

iii) Vt e [0,1], Vn e Z, *(,t + n) = (gn(.),t)

iv) Vt e [0,1/q] and i f 0,...,g " , *(*(",i/q) -
, i/q + t) is a twist map

v) for i = 1,...,q, and any z,w e A, w 1((z,i/q)) < w1 ( (w,i/q)) if and only

if l(f iz)) < i1(f i(w))

vi) v e O(f,zo), vte R, f(l,t) =

-9-
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" Proof of Lemia 3: Let 41 : A x R + A be the one parameter family associated with f by

Lemma (2). We may assume, by composing the maps 4 1 (,t) with a map which preserves

the x = constant foliation (i.e., adjusting the norms of the vectors given by the vector

field Gt) , that if ClC2 e 0(f,z0 ) with w 1 (C1 ) < Wl(l 2 ) then

W 10 1(( 1 lot)) < w 1 (*1 (C2 ,t)) for all t e [0,11. But then letting *2 : A x [0,11 + A

*be defined by

Vz e A, Vt e [0,1], 0 2 (z,t) = *1 (z,qt) - t(p,O)

we see #2 satisfies conditions i), (ii), (iv) and (v) and that if C1,2 e O(,z 0 )

< then w1C42 Clot)) < 1r 1 (0 2 (; 2 ,t)) for all t e (0,11. Hence, we may

deform #2 to a family * : A X [0,1] + A so that (i, ii, iv, v and vi) are satisfied

_i.1 ,and extend * to a map on It by condition (iii). This is the required map 0 and the

proof is complete. //.

Remarks: 1) Informally we can say that the braid given by *2 (r,t) for c e 0(f,z0 ) is

trivial hence it may be 'straightened out', (see Figure 3).

2) The hypothesis that z 0 be a p/q-Birkhoff periodic point is necessary in the

1%above lemma. In fact, if z0  is a p/q-periodic point, but not a p/q-Birkhoff periodic

point then the above lemma can not hold. To see this, note that if z0  is not a p/q-

Birkhoff periodic point then there exist ;1,F2 e O(f,z 0 ) with w1(1CF) < w 1 ( 2 ) and

w1 C( > NIr(f( 2 )). But as we will see in the proof of the next lema, this implies

that the orbits of C 1 and C 2  under 0, 'link' non-trivially (see Figure 4) and hence

cannot be simultaneously straightened out.

'I 3) Finally we note that the proof of Lemma (3) relies only on the fact that points

of a Birkhoff periodic orbit stay in order, i.e., the same proof serves to show

Lemma 3': With f : A + A, g A + A as above and F;1,F2  p/q-periodic points of f

ii
satisfying WI  )f < I ( 2 ) ) for all i - 0,...,q there exists a map

*4 : A x R A satisfying (i-v) of Lemma (3) and

vi') vt e R, (C,t) = ;., i- 1,2

Proof of Lemma 3': Same as the proof of Lemma 3. //.

4.10-
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t-q 1 +(P, 0)  ;2 + 2(p, 0 )  t-I CI 2

f (It )' t I t ) 
2 ( C I) ' t)t

et t-. l f €2

t; ti0 C11

0f (Clot),t)

Figure 3

t~l Yl lp ,°  14 2
+Cp 'O)

ti7

t=O

Figure 4

The final lemma of this section is the 'fixed point' lemma required for Theorem (1).

Lemma 4: Suppose f : A + A is a twist map and p,q are relatively prime integers.

Suppose f has a p/q-Birkhoff periodic point z0 e A and a p/q-periodic point w0 e A

e-l O

- -



ii

which in not a Birkhoff periodic point. Then f has another p/q-Birkhoff periodic

point z, e A with z1 0 O(f,zo). Moreover, if : A A is a twist map and

" sup If(z) - f(z)I is sufficiently small, where I I is the usual norm in R, then
zeH

has a p/q-Birkhoff periodic point.

Remark: This lemma is reminiscent of the theorem of Birkhoff for area-preserving twist

maps (of which Theorem (2) in Section (3) is a corollary) which states that if

0 e (00 (f),p 1(f) for a twist map f then f must have two fixed points. That f must

have two fixed points in the generic case follows easily from index arguments, however

f must have two fixed points even when they are degenerate (see [B1,B]). It should be

emphasized that we are not assuming area-preservation or any circle intersection

properties in Lemma 4.

Proof of Lemma 4: Let g(z) = fq(z) - (p,O) for all z e A as above and let

: A x R + A be the one parameter family associated with g and the orbit of z0 e A

by Lemma (3). For convenience we introduce the following technical notation:

We say two points C,n e A get out of order if Tl(C) < IFIN) and

1(f C()) > W(f (T)) for some 1, 0 < i < q or if wI(r. ) > w(r) and

Wl(f ()) < W1(f i()) for some i, 0 < i < q.

An immediate consequence is that if C,n are p/q-periodic points of f then C,n

get out of order if and only if fk(C),fk() get out of order for all k e z.

Let UO11A ,h...*I l O(f,z O) be chosen and ordered so that

0 ) < WI( II) < ... < I1I(Iq-1 ) < 1 and let VO,...,Vq1 e O(f,w0 ) be chosen and

ordered so that w1(0O ) 4 wI(v0) < WI (VI ) < *.. < w 1 (Vq- 1 ) < W1 (00 + (1,0)). (We may

assume WI(vi) * w(vi+I) by changing coordinates slightly if necessary.) Now we specify

two cases by the Pigeon Hole Principle:

Case 1: There exists iO, 0 e i 0 < q such that for all j - 0,1,...,q - 1,

wI(vl( ) * [Wl(Ui 0 ),T(i0 +)) (or 1l,(vi) * [WI(Iq-l),Wl(WO) + 1) if i0 - q - 1).

Case 2: For each i, 0 < 1 < q, W1(Vi) e [ 1(1y),1 (jii,+)) (and

W (Vq- 1 ) 6 (11(q-1),W1(P 0) + 1).)

'I' -12-
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If Came (1) holds take C0 - ,i0 and 1= P +' in Case (2) take C0 " U0 and

C,1 0 1.

Next we note that since w0  is not a Birkhoff periodic point, there must exist

z e o fz 0 ) such that z,w0  get out of order. Let i e 0(f,z0 ) be such that 1,w0  get

out of order and if z e 0(f,z 0 ) and zw 0  get out of order then z - i or

w I(z) < W (z). Similarly let z e 0(fz 0 ) be such that zw 0  get out of order and if

z e 0(fw 0 ) and zw 0  get out of order then z - z or v(z) < W(z), (it is possible
r1

-

that i - z). Fix rlr 2 1s1 ,s2 e z so that f r,) = 0 + (s,0) and

f r2(z) = + (82.0). Then it follows that C0 + (,0),fr (w0 ) get out of order and

C1 + (s2' 0 )fr2 (w0 ) get out of order. Letting no = f r(w 0 ) - (8l,0) ,

nl = f r2( 0 ) - (82,0) we have that Coo 0  get out of order and ,1,n1 get out of

order. Now, C0,nl do not get out of order since if they did then C0 + (s2 ,0),fr2(wo)

would get out of order, so f (C0 + (s2 ,0)),w0  would get out of order. But z0  is a

Birkhoff periodic orbit, so w ( 1 ([1 ) implies w (f + (82.0))) <

i1 (f-2 (Cl + (*2,0)) = wl(z) and we have a contradiction of the choice of z.

Similarly, Cln0 do not get out of order, i.e., for i - 0,...,q - 1,

Wl(fL(C0)) < I (f(nI)) and w1 (f i()) > W(fi (n0)). If we are in Case (2) then either

i) WIN ) < WI(C. ) and vI(C1) 4 wl(n1),

ii) WIN 0 ) < WI(C) and v1(iC) 4 w1(n1) < w1(C1 )

or iii) wl([C) 4 w1 (n0 ) < w,(C 1 ) and Wl(C,) < w1 (n1 )

while in Case (1) condition i) must hold.

Suppose wIN 0) < Wl(C 0) and for some i, 0 < i < q, W1 (f (no)) > WCf(C0). Fix the

smallest i > 0 such that w1((n0 ,(i - 1)/q)) < Wl(C0) and wl(#( 0 ,i/q)) > wj(Co). By

the twist condition we see that if t e [0,1/q) and v 1 (#(n0 5i/q + t)) = W 1( 0 ) then

w2Cno(0,(i-1)/q+t)) > W2(0). Fixing the smallest j > i such that w(( 0 w(J-l))/q))

> I (C.) and wl(#(n0 ,j/q)) -C wl(C 0 ) we see similarly that if t e [0,1/q) and

w1 (#( 0 ,(j - 1)/q + t) = 1l(c0 ) then w2 (*(n01 (j - 1)/q + t)) < T2(C0). Repeating this

argument until i q we see that *(n0f[ 0 ,11) is not contractible in A (C0}.

' -- 13-
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Similarly, this statement holds if wl(N O ) ) Wl(O(). Also, the same argument implies that

(1,i0,1s) is not contractible in A (c€). Schematically the situation is as

pictured in Figure 5.

t-1 , I

(n.,t),t) /(n O  ft )  Wi t)
S 0 t

..., " .f, "'i:-.( ~t) .-- At-0. n .

t 0 A0 € n

Figure 5

, Claim: There exists a point zI e A, T1 ( 0 ) 1 < < WI(C,) , such that z I  is a fixed

point of q and the loop *(z 1 ,[O,1j) is contractible in A- {€0,Cl } .

Remaks: 1) There are several alternatives for the proof of this claim. As indicated in

Figure 5, the orbits of C o0,l1, and n, form a braid of a fairly simple form and hence

it is not surprising that a proof of the claim can be obtained via a computation and an

application of a theorem of Matsuoka [Mat] on braids and periodic orbits for time periodic

o.d.e.'s on surfaces. The elementary proof given below gives a geometrical view of sme

simple cases of Matsuoka's theorem. (See also recent work of Asimov and Franks [A-F]

relating 'removable' periodic orbits and Nielson theory.)

2) The author would like to thank M. Handel for suggestions this proof, particularly

that the 'stability' statement of Lemma (4) could be shown via the geometrical approach.

This simplifies several steps in the next section.

Proof of the claim: First we show the proof for Case (1), Case (2) follows from similar,

easier, arguments.

Case 1: ( 1 (nO) < w 1 (CO ) and wl(n 1 ) ) w1(1 )): The following notation will he useful:

-14-
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Let

B - (z e A t v O  T Il(z) < 11(y)

b+ = ((i ),y) e A : y > w2 (C1 )}, i 1

b- (Wi R ),y) e A y < w2(Ci)} ,  £ - 0,1 (see Figure 6).

The following definition will also be useful:

For t e (0,1] we may a point c e B with *(C,t) e *(B,t) A B is null in B at

time t if the loop formed by *(C,[Ot)) and the segment joining *(C,t) and C is

contractible in A - {C0,€1 } . we let St - {((,t) e B : c e a and is null in B at

time t.

Remark: Several other characterizations of St  are available. For example, if we let

aa a a4 A be the universal covering space of A A%~) x R A + A the lift of # with

(,O) the identity on A and B C A a particular fixed lift of B then the points

C S t are precisely the projections of the points in ;(;,t) n 3.

b / /° -

bo / ,./'1 / b/ ' / / '
B /

C / '
7 / / 7" I

- .// / // //

Figure 6

We note that if C is null in B then it does not necessarily follow that

*(C,[O,t]) C B. However, it does follow that (c,/q) e B whenever 0 < i/q < t and

that if wl((Ct')) = Wl(Ci) , i = 0 or 1 for some t' e [O,t] then

*(C,t') e b0 U b+ U {C0,C1 } . This follows from the twist condition.

Similarly, the twist condition implies that for each t 6 [0,1], we have

(]+ U b 0 ) - 0 and if a (0,1] + 8 has a(0) e bO , a(1) e b+ then forSt -15

-10.
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each t e 10, 11, #(M t 0, 11),t) (A St contains an arc with one end point in bo- and the

other in b, . Finally, we note that DS~ A( (interior 8) is made up of arcs of the form

*(J~t) where J is an interval in b + or b-and 3S r) aBCb Ub0 1t 0 b ubt

(,,C1) u 1(x,j) e B :j - 0,1).

Next we use the existence of noand iand the properties of their orbits under

*to show that when t - 1, St must contain a connected component Tt such that

aO Tt A ft =6,

0) O contains arcs of the form *(.7 1 t),*(JIt) where Jo£ b6, £ bi
and both *(.70,t) and *(J11t) contain points of both

b;u (Cx,0) e B) and bI u ((x,1) e 9), (see Figure 7).

0'

Figure 7

An easy index argument applied to the set g1l(T1) will then give the required fixed

point zl e A.

Fix the smallest io*ij such that #(rn 3i 0/0), *(n1,i1/q) e a and the smallest

Jo> io, J11, 1 1  such that *(710 j0/q), *(1n 1 j 1 /q) 0 B. we assume first that Jo4J

and consider the following cases:

Case a: For all £ - io,i0 + I,...,jo, 1 (*( 0 1 ri/q)) <(#(1iq)

Case b: For some it io 4 i <Jo, wIr 1 *0 i/q)) > w1 (*(v, 1 i/q)), (i.e. either the orbits

of V11 do not link, or they do, respectively).

4%



Case at The loop formed by *(nO , (0 ,j0/ql) followed by the segment connecting

O(IO, O/q) and no In not contractible in A (CO). Hence, 8jo/q must contain a

component Tj0 /q satisfying (0) above and CO  
Tjo/q (see Figure Sb).

Similarly, *(#'l(Toqio/q),I/q) must contain a component T jl/q satisfying (a)

and (0) and g($ (T Jl/qil/q)) viii therefore contain the desired component of 81 (see

Figure Sc).

Case bt Since the loop 4(no,[Ojo/q]) followed by the segment connecting n0 to

*(nOO/q) is not contractible in A - (CO) and w,(#(noi/q)) > Wl(4(nl,i/q)) for

some 1, 0 < i < J0, we see that 8jo/q either contains a component T

satisfying (a) and (0) above (in which case a component of g(*'1 (TJo/q, o/q)) is the

required et) or BjO/q contains a component TjO/q disjoint from (C ) with aTjo/q

containing arcs *(Jo,jo/q) and *(Jl,jo/q) where Jo,J1  are intervals in b+,b-

respectively, and *(Jo,o/q) has both end points in b while *(Jl,Oj/q) either has

both end points in b- on one end point in b0 - {) and one in b+ - (CI) (see Figure

Sf). When both end points of these arcs are in bo the arcs are not homotopic to b0

in 3 - *(n1 ,j/q) with end points restricted to b . But then *("CT1 /q,0/q).1,/q)

must contain a connected component Tjl/q satisfying (a) and (0) and hence

g(-'l(T jl/q, l/q)) has a component which is the required set (see Figure 8g).

The proof when J1 < JO is symmetric to the above proof.

Let B5 - g-(T 1 ). Then by properties (a), (0) of T1 we see that if we let

x e A move around 38, and compute the total change in the angle between the vector

S- g(z) and the x-axis, the result will be 12w (depending on orientation) (see Figure

9). Hence g must have a fixed point z1 e B, A T1 . Moreover, since T1 & S1 we see

that *(z,,[0,1]) must be contractible in A - (COC 1 } and since COPCI * T1, Z1 e

Since z, is a fixed point of g, it must be a p/q-periodic poilt of f. Since

O(f,zO ) contains no points in 8 - {C0,1 we see that zI e O(f,zO). Finally, since

4(Z1,[0,1]) is contractible in A - (,C1 }  it follows that

4 -17-
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Case a

*(rit 0 /q) 1

fo (nii /q)

a b

Case b

*(n 0 i/q) /7Ipt

0

d(1iq some t c [i/q, j 0/q].

0 co

0 -y ' - -C./ - 7

14 hi A(nl/q)
____ ____ ___ ____ _ /j I/q

f

Figure 8

-18-

%9



W1(f(0 )) < 1 1(fi(zI)) < W1(fi(C1)) for i - 0,...,q and hence zI must be a p/q-

Dirkhoff periodic point of f.

B

Figure 9

To obtain the stability portion of the lemma, we note that if f is sufficiently

close to f and Z(O) - 7(-) - (p,0) then the index of ' : B + A will still be non-

zero and hence g will have a fixed point -1 e ;(B 1 ) n 9 1 . Since T, n B1  is contained

in the interior of B (relative to A) this will also hold for ;(B 1 ) n and hence

T I(Pi( 0 )) < II ( < Wi(fCo) for i = 0,...,q when f is sufficiently close to f.

It then follows as above (even though 0,r 1 are not necessarily near periodic points of

f) that -1 is a p/q-Birkhoff periodic point of f and the proof of Case 1 is complete.

i iCase 2: Zn this case we know 11 (f (no)) ( 1 1 (f i1)) for i - 0,...,q. Hence when

! 1(C 0 ) 4 wI(N 0) w1(C I) we may apply Lemms (3') to obtain * : A x R + A associated

with g which has W(%0
'
t) - no, ;(C 1 ot) - CI for all t. Then i(Co0,0,11) is not

contractible in A (-n0 )
, 

but Z(0, [0,1]) and ;(n,0[0,11) do not link. Hence we may

apply Case (a) above taking B = (z e A : wI(n 0 ) 4 W (z) il(C,) and obtaining a fixed

point z1 of g such that T(z 1,[0,1]) links with none of the * orbits of

Co, C" no or n1. The rest of the proof proceeds as before.

The case when w(C) < w 1 (n I) 4 i(C) is, of course symmetric to the above and the

proofs of the claim and the lemma are complete. //.

-19-
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5) Proof of Theorem 1: Let f : A + A be a twist map, p,q relatively prime integers

and w0 e A a p/q-periodic point of f. We may assume w0  is not a Birkhoff periodic

point since if it were we would be done.

Next we note that since f has a p/q-periodic point we have that

p/q e (0 0 (f),p 1 (f)]. we may assume p/q e ( m0 (f),p 1 (f)) since if pi(f) = p/q, i = 0 or

I then f ((i)xet is a lift of a circle diffeomorphism with rotation number p/q

and the existence of the p/q-Birkhoff periodic point follows from the usual arguments for

circle maps (see Herman (HI]). Moreover, we may assume that for each a e R there exists

ya e (0,I) such that wl(f(a,y,)) - a + p/q. If this is not the case for the given

map f then we may extend f to a map f, : A, + A, where Al - ((x,y) e 32:

-1/2 4 y 4 3/2), fl is a twist map satisfying the above condition and f and f, agree

on A. Since p0 f) < p/q < P1 f), if we can find a p/q-Birkhoff periodic point for

fi on A, then in fact it must have orbit in A (see Figure 10).

a fU()

, !-

a a+p/q

Figure 10

Claim Is There exists a C2 homotopy H : A x (0,11 + A satisfying

a) H(,o) - f(.) ,

I-: b) Vs e (0,1], H(*,s) is a twist map

c) Vs e [0,1I, w0  is a p/q-periodic point of H(.,s)

d) H(*,1) has a p/q-Birkhoff periodic point.

-20-
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Proof of Claim 1: ixK e A so that zoin in the interior of A, (W I(ZO) + Jp/q,

j - 0,...,q - 0) n ((W I(w) :w e O(f,w 0)) U Z) - A and v IfMz 0 )) - W(z0+ p/q. Fix

ye (0,11 so that w I(f(1 1 (z 0 ) + ip/q,yi)) - i I(z 0 ) + Ui + l)p/q for i 0 ,...,q - 1

(so YO - W 2(a0 )). For any C > 0 we may define h i's A + A, one parameter families

of diffeomorphisms, i =1,...,q, a e [0,11 so that

1) Ye e 10,i], i 1,...,q, h1 5s(x + 1,Y) - hi~5 (x,y) + (1,0) for all (x,y) e A

2) vs e (0,11, i1 1,. ..,q, support (hi's - identity) n ((X,Y) e A :0 IC X < 1)

is contained in {(x,y) eCA :Ix - (I Oz 0 ) + ip/q - Ew1(z 0) + ip/q])I < el

(where [*) denotes the greatest integer function) and hi,. C) is C on

A x [0,11

3) Vs e [0,1], i1 ,..q v(x,y) e A, v ICh i' CX,y)) - x

4) i - 1,.. .,q, hi.0 , identity and

T (h (WC (zu) +ip/q - [w1 Cz0 ) + ip/qi, 1C~ 1 z)+C

jyi if i -1,...,q - I

yo if i-q

Choose a > 0 so small that

*(U U support (h i,5-identity)) n (O(f,w0 ) u (C,y) e A je z)) = o

and define

H A X [0,11 + A

Ii(z,s) - h q,5 Of O hq..~ 10 hq-2,a 0 -. 0 h115Cz)

Then H has properties (a-d) above. In particular, for all a e (0,1], w
0 

is a p/q

periodic point of NC,.) since f and H(',s) agree on a neighborhood of O(f,w0 ) and

NC,.) is a twist map since the composition of a twist map with a map preserving the x

4 constant foliation is a twist map. The map HC',1) has zoas a p/q-periodic point by

4 condition (4) above and zois a p/q-Birkhoff periodic point since for any

C e O(H(',1),z 0 ) Satisfies 1 (H(C,l)) = (4 + p/q again by condition (4). Hence, H

is the required homotopy and the proof of the claim is complete.I.

-21-
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,.4.

Let a= a e [0,1] : Vs1 P 8, H(o,s 1 ) has a p/q-Birkhoff periodic point). Since

I e - 0 f, if we can show that the point 9I = inf(s e [0,1] a e -) is in the interior

of -2 i.e., that - is open and closed, then we must have - (0,1]. Hence

o- H(*,0) - f(*) would have a p/q-Birkhoff periodic point and the proof would be complete.

Claim 2: 3 is closed.

Proof of Claim 2: This follows immediately from Lemma (1). //.

Claim 3: 2 - [0,1].
-4

* Proof of Claim 3: Suppose BE $ [0,1]. Then 1 - inf(s e (0,1] : s e > 0. By Claim

(2) we have that s, e 2- and hence that H(*,s I ) has a p/q-Birkhoff periodic point

%" C0 e A. By construction, w0  is a p/q-periodic point of H(o,s 1 ) which is not a

Birkhoff periodic point. Hence, we may apply Lemma (4) to show that H(*,s I ) has another

4. p/q-Birkhoff periodic point z1 e A with z, t O(Hl*,s),z1 ) and, more importantly,

for s sufficiently close to sI , the stability statement in Lemma (4) implies H(*,s)

j also has a p/q-Birkhoff periodic point. Hence sI is in the interior of R

contradicting the defi-4ttion of 91. This contradiction implies that we must nave

8I - 0, i.e., ( - [0,1], and the proof of the claim is complete. //.

As noted above, 0 e -2 implies that H(o,0) f(s) has a p/q-Birkhoff periodic

4 point and the proof of Theorem (1) is complete. //.

-22-
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Proof of Claim 1: Fix z0 e A so that zo is in the interior of A, {wIz 0 ) + jp/q,

j = 0,...,q - I n ([N1(w) : w e 0(f,w0 )} U Z) = 1 and w1 (f(z0 )) - i 1(z0) + p/q. Fix

Yi e (0,1] so that wM1 (f( (Z0 ) + ip/q,yi)) = wl(z 0 ) + (i + 1)p/q for i = 0,...,q - 1

(so Y0  T2 (z0 )). For any e > 0 we may define hi s : A + A, one parameter families

of diffeomorphisms, i 1 l,...,q, a e [0,1] so that

1) Vs e (0,1], i 1 l,...,q, hi,,(x + 1,y) = hi,s(x,y) + (1,0) for all (x,y) e A

2) vs e (0,1], i - 1,...,q, support (hi' s - identity) n ((x,y) e A : 0 4 x < 1)

is contained in f(x,y) e A : tx - (W1 (Z0 ) + ip/q - N 1 (z0 ) + ip/ql)I < e}
ml

(where (] denotes the greatest integer function) and hi,.() is C on

A X 10,1]

3) Vs e (0,1], i - 1,...,q, V(x,y) e A, vl(hi (X,y)) = x

4) i = 1,...,q, hi'O - identity and

w 2 (hi, 1(Wl(zo) + ip/q - [w1 (z 0 ) + ip/q], w2 (f(w1 (z0 ) + i - 1)p/q,yi-l)

' yi if i - 1,...,q - I

yo if i = q

Choose e > 0 so small that

q

(U U , support (h is-identity)) n (O(f,w0 ) U ((j,y) e A j e z))= j
i1 se[0,1]

and define

H : A x [0,1] + A

H(zs) = hq,s o f 0 hq_1, s 0 hq_2, s 0 ... 0 hl,s(Z)

'..1 Then H has properties (a-d) above. In particular, for all s e [0,1], w0  is a p/q

periodic point of H(*,s) since f and H(-,s) agree on a neighborhood of 0(f,w0 ) and

H(*,s) is a twist map since the composition of a twist map with a map preserving the x =

constant foliation is a twist map. The map H(.,1) has z0 as a p/q-periodic point by

-. condition (4) above and z0  is a p/q-Birkhoff periodic point since for any

e O(H(,I),ze) satisfies vI(H( ,l)) = wi1() + p/q again by condition (4). Hence, H

is the required homotopy and the proof of the claim is complete. //.

-21-
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Let 3 - (s e [0,1] : Vs 1 ) s, H(.,s 1 ) has a p/q-Birkhoff periodic point}. Since

1 e - ' 2 , if we can show that the point s1 - inf(s e [0,1] : s z -) is in the interior

of - i.e., that - is open and closed, then we must have 1 - [0,1]. Hence

H(, 0) = f(.) would have a p/q-Birkhoff periodic point and the proof would be complete.

Claim 2: 3 is closed.

Proof of Claim 2: This follows immediately from Lemma (1). //.

Claim 3: H - [0,1].

Proof of Claim 3: Suppose 2 # [0,1]. Then s1  inf(s e [0,1] :s e > 0. By Claim

(2) we have that s1 e - and hence that H(',s 1) has a p/q-Birkhoff periodic point

' .0 e A. By construction, w0  is a p/q-periodic point of H(.,s 1 ) which is not a

Birkhoff periodic point. Hence, we may apply Lemma (4) to show that H(*,s) has another

p/q-Birkhoff periodic point zI e A with z1 t O(H(C,s 1 ),z1 ) and, more importantly,

for a sufficiently close to s,, the stability statement in Lemma (4) implies H(O,s)

also has a p/q-Birkhoff periodic point. Hence sI is in the interior of H

contradicting the definition of s1 . This contradiction implies that we must have

81= 0, i.e., .H - [0,1], and the proof of the claim is complete. //.

As noted above, 0 e H implies that H(.,O) - f(.) has a p/q-Birkhoff periodic

point and the proof of Theorem (1) is complete. //.

4
9'0

A,
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6) Some Related Theorems: In this section we show

Theorem 4: Suppose f : A A is a twist map and pq are relatively prime integers.

If every r/s-periodic point of f satisfies a - q or a > 2 then every p/q-periodic

point of f is a p/q-Birkhoff periodic point.

Remark: The theorem states that a periodic orbit of a twist map, with period

significantly smaller than all larger periods, will be a Birkhoff periodic orbit. Since

the possible periods are always contained between the rotation numbers of the map

restricted to the boundaries, we may give conditions under which the hypotheses hold as

follows:

Let Fn denote the Farey series of order n, i.e., Fn  is a series of irreducible

fractions between zero and one in ascending order with denominator less than one equal
* 0 1 0O 1 1 10 1 1 2 1i

to n. F - , , F2 "('7 iu F 3 " ' ' ' .' (see Hardy and

Wright [H-W]).

Corollary: Suppose f : A * A is a twist map, pq are relatively prime integers and

-. P0 (f),p/q,P1 (f) are consecutive elements in Fn for some n. If p0 (f) - ro/so,
3 3

p(f) - rl/s I in lowest form and so > 2 q* a, > I q then all p/q-periodic points of

f (if any) are p/q-Birkhoff periodic points.

Proof of the Corollary: Suppose r/s e Fn+i - Fn+i.i for i > 0 and ro/so < r/s < p/q.a1 + a a a2

Then, by Theorems (29-31) of Hardy and Wright (H-WI, r/s - where , - are
b b2  b1I b 2

consecutive elements of Fn+iI and a1 + a2 , b1 + b2  are relatively prime. But then

aI  a2  a1  a1  a2  a2
e (ro/so,p/q] and hence - e F iff - _ rO/sO and _ e Fn iff 2 = p/q.

b1 2 b I l bI 2 2
Hence bI ) q and b2 • q so s ; 2q. Similarly, if p/q < r/s < rl/s 1  then s ) 2q

so f,p,q satisfy the hypotheses of Theorem (4) and the proof of the corollary is

complete. //.

Remark: Essentially the theorem and corollary above say that if f : A + A is a twist

map and f is not 'twisting' very much, then the periodic orbits with smallest period

must be Birkhoff periodic orbits. We know of no examples implying that the conditions of

-23-
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Theorem (4) are the best possible, however if f is area preserving then the theorem can

be significantly improved.

Theorem 5: If f : A + A is an area preserving twist map, p,q are relatively prime

integers and if every r/s-periodic point of f has a :0 q then every p/q-periodic point

of f is a p/q-Birkhoff periodic point.

-,, The proof of Theorem (4) follows from ideas similar, but much easier technically, to

those in Theorem (1). The proof of Theorem (5) is vaguely related to the 'graph-

theoretical' approach to larkovskii's theorem in Block, Guckenheimer, Nisurewicz, Young

[aG].•

Proof of Theorem 4: Fix f : A + A and p,q an in the theorem. Suppose z0 e A is a

p/q-periodic point, but z0 is not a p/q-Birkhoff periodic point of f. Then we fix

C1,C2 e o(f,z0) so that ( 1 ) < w(C2), lf(W) > W(f(C2 )) and

W(f( 1 I)) < T (fC( 2 )) for some J, 1 < j ( q/2 + 1. Then there exists an integer r

so that fk (C 2 ) . C1 + (r,0) for some k, j 4 k 4 3q/2, k 0 q.

Now fix N > 0 so large that w1 (f i(W(C 2 ),I)) < WI(f i ((1) + N,0)) for

i - 0,...,2q and let B * (Cx,y) : W C) x -C (1I) + N). Let g : A + A be defined

by Vz e A, g(z) = fk(z) - (r,0). Then g(C2 ) " y Let J1 {(NI(C),y) : Vy ) Y,

. g(Wl(c,),y1 ) e B}. and J2 - {(w1 ((C) + N,y) : Vy, - y, g(wl( 1 ) + Nyl) e B). Then the

component T of g(B) n B with boundary containing g(J1 ) U g(J2 ) must have a fixed

point. This is easily seen by computing the change of the argument of the vector z -

g(z) as z moves around the boundary of g 1 T), this change is t21 depending on

orientation (see Figure 11).

But this fixed point of g corresponds to an r/k-periodic point of f. Hence, if

f has no r/sl-periodic points with a1 0 q, a, 4 3q/2 then every p/q-periodic point of

f must be a p/q-Birkhoff periodic point and the proof is complete. //.

Proof of Theorem 5: Fix f : A + A an area preserving twist map, p,q relatively prime

integers and z0 a p/q-periodic point of f. Let {C0,.. ,c[g} = Of,z 0 )

(z e A T t~z) e [0,1)) and number so that 9l(C 1 1(q) -C.. 'C W1(Cg_ ). We may

-24-
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assume, by changing variables slightly if necessary, that i1(Ci) wICi* for

i - 0,...,q - 2. we define a directed graph with CO . qas nodes an follows:

There is an edge from C to Cjif and only if

a) W1 (f(W1(C1 ),o) e (w((CJ,() + a, )+ 9 for some e z

or. b) I 1 (cipl) e [1(c)+ "I(CJ+I) + 9) for some a e z.

*Hence each C has at least one edge exiting it, moreover if zo is not a p/q-Birkhoff

periodic point then some C has two edges exiting from it since for som

C±i*CJ'I ' I (C v 1 (C) but w (f(Y) > W1 (f(i )) (see Figure 12), so

-25-
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In this case the graph formed has loops of length less than q. But this implies that

there exist rationals r/s e (p0 (f),'P(f)] with s < q. By Birkhoff's theorem (Theorm

(2)) (as noted by Birkhoff, f : A + A need only preserve a measure with non-zero density

for Theorem (2) to hold, see (31], so the change of variables above is no problem) we see

that f must have an r/s-periodic point. Hence, if f t A + A has no r/s-periodic

points with s < q then every p/q-periodic point of f is a p/q-Birkhoff periodic

point. /.
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assrn, by changing variables slightly if necessary, that vi(q 1) 0 vjCij for

± - 0,...,q - 2. We define a directed graph with CO....C- as nodes as follows:

There is an edge from C i to Cjif and only if

a) W1 (f(i,(C,),o) e +W(..~ a, * w(Cj ) + a] for scme a e63

aE b) ui(f(wI(Ci)sl) e (11(Cj ) + s' 1 (CJ+1 ) + a) for some a e S.

Nence each C has at least one edge exiting it, moreover if sois not a p/q-Birkhoff

periodic point then sowme has two edges exiting from it since for some

CiAJOW I (C i) W I (C ) btvm ) >W 1 (f(C j)) (see Figure 12), so

W M ( 1 ,0) <W C ( MC(f(CW)) MW 1((WCC),I)).
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In this cane the graph formed has loops of length less than q. But this implies that

there exist rationals r/s I (p0 (f),pl(f)] with a < q. By Birkhoff's theorem (Theorem

(2)) (as noted by Birkhoff, f : A + A need only preserve a measure with non-zero density

for Theorem (2) to hold, see [1(], so the change of variables above is no problem) we see

that f must have an r/s-periodic point. Hence, if f : A + A has no r/s-periodic

points with a < q then every p/q-periodic point of f is a p/q-Birkhoff periodic

point. //.

1i
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